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Abstract: The prediction of growing stock volume is one of the commonest applications of remote
sensing to support the sustainable management of forest ecosystems. In this study, we used data
from the 4th Spanish National Forest Inventory (SNFI-4) and from the 1st nationwide Airborne
Laser Scanning (ALS) survey to develop predictive yield models for the three major commercial tree
forest species (Eucalyptus globulus, Pinus pinaster and Pinus radiata) grown in north-western Spain.
Integration of both types of data required prior harmonization because of differences in timing of
data acquisition and difficulties in accurately geolocating the SNFI plots. The harmonised data from
477 E. globulus, 760 P. pinaster and 191 P. radiata plots were used to develop predictive models for
total over bark volume, mean volume increment and total aboveground biomass by relating SNFI
stand variables to metrics derived from the ALS data. The multiple linear regression methods and
several machine learning techniques (k-nearest neighbour, random trees, random forest and the
ensemble method) were compared. The study findings confirmed that multiple linear regression
is outperformed by machine learning techniques. More specifically, the findings suggest that the
random forest and the ensemble method slightly outperform the other techniques. The resulting
stand level relative RMSEs for predicting total over bark volume, annual increase in total volume
and total aboveground biomass ranged from 30.8–38.3%, 34.2–41.9% and 31.7–38.3% respectively.
Although the predictions can be considered accurate, more precise geolocation of the SNFI plots and
coincide temporarily with the ALS data would have enabled use of a much larger and robust field
database to improve the overall accuracy of estimation.

Keywords: national forest inventory; airborne laser scanning; forest yield; regression; machine
learning techniques

1. Introduction

Information about timber resources and how these vary over time is both economically and
environmentally important and is essential for landowners, enterprises, forest managers and researchers.
Moreover, local, regional or global estimates of volume and biomass are fundamental for analyzing
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forest productivity, estimating biomass and carbon stocks and evaluating the ecosystem response to
climatic change and anthropogenic influences [1].

Forest field inventory based on measuring diameter at breast height (dbh) and total height (h)
of trees in numerous sample plots remains the most commonly used method of estimating timber
and forest biomass stocks for forest management [2]. The individual tree model predictions are
often aggregated at the plot level and used as training and/or accuracy assessment data for remote
sensing-based applications or aggregated at the plot level and then added or averaged over plots to
produce large area estimates [3]. Although this method is accurate, it is very expensive and often
faces serious operational difficulties [4]. Some available public databases such as the National Forest
Inventories do not always provided information about the plots at the level of detail required for
forest management purposes. However, in recent decades, the combined use of these databases
and the semi-automatic capture of forest state variables by various remote sensing techniques has
substantially increased the amount of data available for stand level prediction purposes [5]. Remote
sensing systems have proved to be an effective option for overcoming the above-mentioned limitations
and enabling forest data to be obtained in large areas with a more reasonable effort [6] and even in
areas not previously sampled [1]. Among these systems, Airborne Laser Scanning (ALS), an active
remote sensing methodology which transmits pulses of laser light towards the ground, is recognized to
be an accurate, efficient and cost-effective approach to predicting forest variables such as stand height,
volume and biomass [4,7,8]. In a practical applications of ALS data, georeferenced plots are first used to
develop empirical models of the relationships between field measurements and ALS-derived metrics,
and the models are then applied to the entire area of interest, thus predicting the forest attributes on the
basis of ALS metrics alone [1]. Although positioning accuracy may not be critical in some forest studies,
it is of key importance when developing predictive models from very high-resolution remotely sensed
data [9]. Accurate geographical co-registration of ALS data and field plots is necessary for the accurate
prediction of stand properties, otherwise the laser-derived metrics will be subject to errors [10].

Since the early studies by Maclean and Krabill [11] and Nelson et al. [12], which first used ALS
data for volume and biomass estimation [13], many efforts have been made to use this technology
for predicting forest yields [14–16]. Multiple Linear Regression (MLR) has frequently been used to
estimate the empirical model parameters (e.g., [17,18]). The simplicity and clarity of the resulting
model are the main advantages of the technique, while the probability of selecting highly correlated
predictors with little physical justification and the non-fulfilment of the assumptions of normality,
homoscedasticity, independence and linearity are the main drawbacks [19]. In order to overcome
the limitations of MLR, much attention has been given in recent years to non-parametric machine
learning techniques [19–21]. The power of machine learning techniques is based on the fact that they
do not depend on any a priori assumption about the data; however, they yield models that are usually
complex and the role of the variables selected from the models may be difficult to understand [22].

Models developed using ALS data can be trained with data from existing NFI plots, allowing the
development of accurate empirical yield models for predicting variables such as volume or biomass
with errors lower than 25% and 27% respectively, as observed in Nordic countries [2]. So far, this
methodology has been used in very few countries: Austria [23], Denmark [24] and Sweden [2].
In Spain, two public organizations have collected both ALS and NFI data and made them available to be
downloaded free of charge by any interested party. Thus, the Spanish National Forest Inventory (SNFI),
carried out by the Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente (MAPAMA),
is the most important public database providing information about forest use, structure and yield of all
forests around the country. Moreover, ALS data, which cover the whole country, have been compiled
by the PNOA-LiDAR project of the Instituto Geográfico Nacional (IGN) since 2008 with multipurpose
objectives, e.g., obtaining digital elevation, surface or hydrographic models, and automatic detection of
terrain modifications. Despite the availability of this very valuable information, very few studies have
used both types of information together (e.g., [4,25,26]), mainly because of the following important
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challenges: (i) differences in time of acquisition of both types of data in most regions, and (ii) problems
associated with the precise geolocation of SNFI plots.

Northwestern Spain (encompassing the regions of Galicia, Asturias and Cantabria) is one of the
most productive forest areas in Europe, and the major commercial forest species, grown in intensive
forest plantations to produce panelboard, sawlog and pulpwood, are Eucalyptus globulus Labill,
Pinus pinaster Ait. and Pinus radiata D. Don [27]. Together the three regions of NW Spain contribute
about 58% of the timber harvesting (42% of coniferous and 79% of hardwoods) carried out annually in
Spain [28]. Due to the economic importance of the timber, methods of quantifying the wood/biomass
have become important for all agents involved in forest management and conservation. Therefore, the
main objective of this study was to generate a high-resolution raster database with information about
key forest yield variables such as total over bark volume (m3/ha) and total aboveground biomass (t/ha).
Secondary objectives -necessary to achieve the first objective- include the following: (i) development of
a procedure to harmonize the SNFI and the ALS data; (ii) selection of the best empirical models of
relationships between field measures and ALS-derived metrics, by comparing a parametric technique
(MLR) and several well-known non-parametric machine learning regression techniques; and (iii) to
generate spatially-continuous maps of yield variables.

2. Materials and Methods

2.1. Study Area

Three of the most productive regions in Spain (Galicia, Asturias and Cantabria), covering a total
area 45,499 km2, were chosen for this study. Galicia is divided into four provinces (A Coruña, Lugo,
Ourense and Pontevedra), while Asturias and Cantabria are both single-province regions (Figure 1).
This is important as province is the basic unit used in the SNFI to elaborate and present the data.
The study area forms part of the European Atlantic Bio-geographical Region, except for south-eastern
Galicia, which belongs to the Mediterranean Bio-geographical Region [29]. Forests occupy an area of
21,190 km2 [28] which represents 46.5% of the total surface area of the study area. Considering the
area occupied, Eucalyptus globulus is the dominant forest species (22.5%) followed by Pinus pinaster
(20.2%), Quercus robur (15.5%), Quercus pyrenaica (8%), Castanea sativa (8%), Pinus radiata (7.5%) and
Fagus sylvatica (5.7%) [30].
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Figure 1. Location of the study area and National Forest Inventory plots and Spanish Forest Map 
polygons dominated by the three major commercial tree forest species (Eucalyptus globulus, Pinus 
pinaster and Pinus radiata) in in north-western Spain. 

2.2. Data Collection 

Two different sources of data were used in this study: national forest inventory and nationwide 
airborne laser scanning data, both of which were obtained free of charge from different Spanish 
Governmental organizations. 

2.2.1. SNFI Data 

The field data used in this study were obtained from the Fourth Spanish National Forest 
Inventory (SNFI-4), in Galicia [31], Asturias [32] and Cantabria [33] in different surveys carried out 
between 2008 and 2012. The SNFI operates on a ten-year cycle and the sampling plots are established 
at the intersections of a 1×1 km UTM grid. Different field plots of variable radius, depending on the 
dbh of the trees, were sampled: a radius of 25 m for trees with dbh ≥ 42.5 cm, a radius of 15 m for trees 
with dbh ≥ 22.5 cm, a radius of 10 m for trees with dbh ≥ 12.5 cm and a radius of 5 m for trees with a 
dbh ≥ 7.5 cm. Trees with 2.5 ≤ dbh ≤ 7.5 cm were counted but not measured. For more details about the 
SNFI data, see Alberdi et al. [34]. 

Plots were selected according to the species composition, including pure stands (basal area ≥ 
80% of the total basal area within the plot) of the three major commercial tree forest species grown in 
the area. Following this criterion, a total of 1428 field plots were used in this study (Figure 1). In total, 
760 plots were dominated by P. pinaster, 191 by P. radiata and 477 by E. globulus. Stand-related 
variables such as the number of stems per hectare, basal area, dominant height (mean height of the 
100 thickest trees per hectare), mean stand height, quadratic mean diameter, dominant diameter, total 
over bark volume and annual increase volume were calculated from tree measurements and by using 
appropriate expansion factors. An expansion factor can be defined as the relationship between the 
reference area (1 ha) and the area of subplots by adjusting the values of the number of sampled trees 
to a per hectare value [5]. 

The stand level species-specific allometric models developed for the same ecoregion by Castaño-
Santamaría et al. [35] were used to estimate total aboveground biomass per plot. 

Figure 1. Location of the study area and National Forest Inventory plots and Spanish Forest Map
polygons dominated by the three major commercial tree forest species (Eucalyptus globulus, Pinus
pinaster and Pinus radiata) in in north-western Spain.

2.2. Data Collection

Two different sources of data were used in this study: national forest inventory and nationwide
airborne laser scanning data, both of which were obtained free of charge from different Spanish
Governmental organizations.

2.2.1. SNFI Data

The field data used in this study were obtained from the Fourth Spanish National Forest Inventory
(SNFI-4), in Galicia [31], Asturias [32] and Cantabria [33] in different surveys carried out between
2008 and 2012. The SNFI operates on a ten-year cycle and the sampling plots are established at the
intersections of a 1×1 km UTM grid. Different field plots of variable radius, depending on the dbh
of the trees, were sampled: a radius of 25 m for trees with dbh ≥ 42.5 cm, a radius of 15 m for trees
with dbh ≥ 22.5 cm, a radius of 10 m for trees with dbh ≥ 12.5 cm and a radius of 5 m for trees with a
dbh ≥ 7.5 cm. Trees with 2.5 ≤ dbh ≤ 7.5 cm were counted but not measured. For more details about the
SNFI data, see Alberdi et al. [34].

Plots were selected according to the species composition, including pure stands (basal area ≥ 80%
of the total basal area within the plot) of the three major commercial tree forest species grown in the
area. Following this criterion, a total of 1428 field plots were used in this study (Figure 1). In total,
760 plots were dominated by P. pinaster, 191 by P. radiata and 477 by E. globulus. Stand-related variables
such as the number of stems per hectare, basal area, dominant height (mean height of the 100 thickest
trees per hectare), mean stand height, quadratic mean diameter, dominant diameter, total over bark
volume and annual increase volume were calculated from tree measurements and by using appropriate
expansion factors. An expansion factor can be defined as the relationship between the reference area
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(1 ha) and the area of subplots by adjusting the values of the number of sampled trees to a per hectare
value [5].

The stand level species-specific allometric models developed for the same ecoregion by
Castaño-Santamaría et al. [35] were used to estimate total aboveground biomass per plot.

Table 1 includes the summary statistics of the stand-related yield variables considered for the
three forest species in the study area.

Table 1. Descriptive statistics of total volume (TV), annual increase in total volume (AITV) and total
aboveground biomass (AGB), extracted from the SNFI-4 plots with the dominant species equal to or
greater than 80% of the total basal area of the final plots used after the harmonization procedure.

Species
Nº

Plots
TV (m3/ha) AITV (m3/ha Year) AGB (t/ha)

Mean Min Max Std Mean Min Max Std Mean Min Max Std

E. globulus 477 209.52 1.50 812.69 155.15 16.84 0.45 50.48 10.19 140.17 1.37 570.33 106.24

P. pinaster 760 162.41 0.98 567.55 120.94 9.19 0.10 27.45 5.80 91.57 0.44 325.62 68.78

P. radiata 191 178.17 1.29 611.77 145.14 11.88 0.29 35.19 7.79 96.89 0.75 334.27 79.14

The distribution of the species under study and the classification of vegetation types were
determined using the Spanish Forest Map (Figure 1) (scale 1:25,000, minimum mapping unit of 1 ha),
developed in coordination with the SNFI-4.

2.2.2. ALS Data

The ALS data used in the study area were collected during different flights between 2009 and
2012 for the PNOA-LiDAR project. The point cloud was captured with up to four returns measured
per pulse and a mean density of 0.5 points/m2 and vertical RMSE ≤ 0.20 m. Square ALS tiles of area
2 × 2 km in LASer (LAS) binary files were obtained from the National Geographic Information Centre
(CNIG) (data available at http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?
codFamilia=LIDAR#, last accessed on 4 October 2018). A total of 13,396 LAS files were required in
order to cover the study area. The ALS data were extracted using several processing programmes
implemented in the FUSION/LDV software [36]. After separating the first and last returns and
eliminating the possible outliers from the point cloud, a Digital Terrain Model (DTM) of cell size 5 m
was generated. The “GridMetrics” program was used to compute metrics for ALS returns within
25 m grid cells, defining a grid cell size related to the size of the ground plot according to Canadian
specifications [37]. The ALS metrics were computed by considering the first returns and all returns
independently. A predefined threshold of between 2 and 50 m above ground level was used in order to
compute canopy cover metrics. In total, 36 ALS metrics widely used as effective variables for volume
or biomass estimations (e.g., [38–40]) were computed as independent variables for developing the
empirical yield models (Table 2). Note that all these metrics were subsequently calculated for the
SNFI plots using the “ClipData” and “CloudMetrics” programs; the normalized ALS point cloud was
clipped with the limits of each field plot (25 m radius) thus creating an independent file per plot.

http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR#
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=LIDAR#
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Table 2. Summary of Airborne Laser Scanning (ALS) metrics extracted for each plot.

ALS Metrics Description

Height metrics

Metrics expressing the central
trend in ALS height distribution

hmean mean

hmode mode

Metrics expressing the
dispersion of ALS height

distribution

hSD standard deviation

hVAR variance

hAAD absolute average deviation

hIQ interquartile range

hCV coefficient of variation

hmax, hmin maximum and minimum

Metrics expressing the shape of
ALS height distribution

hSkw skewness

hKurt kurtosis

CRR
canopy relief ratio ((mean
height−min height)/(max

height−min height))

Percentiles of the ALS height
distribution h01, h20, . . . h95, h99

1th,5th, 10th, 20th, 25th, 30th,
40th, 50th, 60th, 70th, 75th, 80th,

90th, 95th, 99th percentiles

Canopy cover
metrics

Fixed height break
threshold (HBT)

CC percentage of first returns above
2.00 m/total all returns

PARA2 percentage of all returns above
2.00 m/total all returns

ARA2/TFR ratio between all returns above
2.00 m and total of first returns

Variable HBT

PFRAM percentage of first returns above
mean/total all returns

PARAM percentage of all returns above
mean/total all returns

PARAMO percentage of all returns above
mode/total all returns

PFRAMO percentage of first returns above
mode/total all returns

ARAM/TFR ratio between all returns above
mean and total of first returns

ARAMO/TFR ratio between all returns above
mode and total of first returns

2.2.3. Harmonization of SNFI and ALS Data

The plot positioning procedures used in the SNFI-4 were applied by using handheld GPS
equipment, which has an expected average accuracy of approximately 3–5 m [25]. In this respect,
Gobakken and Næsset [10] observed that larger plot sizes (300–400 m2) compensate for errors in locating
plots sampled for estimation of biophysical properties from ALS data. Thus, as the plot size used in the
SNFI is around 1964 m2, for positioning errors of 5 and 10 m (much larger than the theoretical error),
the areas overlapping a plot in a correct position and a plot located in an altered position are 84.3%
and 74.7% respectively [25]. Although this may suggest that SNFI plot positioning is not difficult,
practical errors will actually be much higher than theoretical errors. Thus, for example, Murgaš et
al. [41] reported that up to 10% of the plots had positioning errors of 20 m or more within inventories of
selected management units in Slovakia. As revisiting SNFI plots to capture more accurate coordinates
is very costly and time-consuming, Spanish authorities are planning to capture new coordinates with
errors less than 1 m in the next re-measurement of SNFI plots [26,42], thus making it easier to combine
the field plot data with the information provided by remote sensing systems [34].



www.manaraa.com

Remote Sens. 2019, 11, 1693 7 of 25

Another important problem related to the combined use of SNFI and ALS data is the difference in
the time of data acquisition in some provinces (Table 3). This generates a new problem as some plots
may be disturbed (cutting operations, wind damage, etc.) during the time between the laser scanning
and the field inventory. Thus, prior to using both sources of data together, we developed a three-step
process aimed at harmonizing the different types of data.

Table 3. Dates of SNFI-4 and ALS surveys carried out in the different provinces in the study area.

Province SNFI-4 (Year) ALS (Year)

A Coruña 2008–2009 2010
Lugo 2009 2009–2010

Ourense 2009 2009
Pontevedra 2009 2009–2010

Asturias 2009–2010 2012
Cantabria 2012 2010–2012

We first carried out a forward or backward projection of the stand yield variables obtained from
the SNFI to the same date as the ALS data, in order to correct the effect of the different years of ALS
and SNFI surveys. Thus, stand total volume was projected by using the tree volume increment values
available from the SNFI. For updating total aboveground biomass, we relied on the strong well-known
relationship between stand volume and stand biomass (e.g., [43,44]) and we thus developed total
stand volume-to-total stand aboveground biomass models to estimate biomass from the projected
stand volume.

Secondly, with the aim of using dominant height to eliminate incorrectly georeferenced or
disturbed plots, when necessary, we projected the values of this variable obtained from the SNFI plots
forwards or backwards (between 1 and 3 years) to the same date when the ALS data were acquired.
Site quality equations are essential to enable this important step to be carried out, and information
about stand age and site index are also required. Stand age is required to enable the growth stage of
the plot to be determined, and stand age and site index are used in site quality equations to determine
the height growth rate. Site quality equations have already been published for the species in the
region [45–47]. However, obtaining stand age and site index proved very challenging because the SNFI
does not collect such data. To resolve this problem, we developed specific models for each species in
order to predict stand age for each SNFI plot, and we used the spatially continuous site index maps
recently developed for the three species in the ecoregion [48–50] to estimate the site index values.
In order to project dominant height of SNFI plots to the date of the ALS survey, the following three
steps were therefore undertaken for each SNFI plot: (i) estimation of site index, (ii) prediction of stand
age and (iii) calculation of the dominant height growth ratio.

Finally, we compared the dominant height of the SNFI-4 plots projected to the ALS date and the
95th height percentile (h95) of the point cloud obtained using the laser scanning survey. Following the
procedure used by Nilsson et al. [2] in Sweden, plots with differences in the upper 3 m of the dominant
height were removed. Once this step was carried out, we relied on effective elimination of plots that
were poorly geolocated or disturbed in the period between the laser scanning and the field work. As a
result of this refinement process, 477 E. globulus plots (22.0% of total available plots), 760 P. pinaster
plots (37.4%) and 191 P. radiata plots (30.8%) were used to develop predictive models of total over bark
volume, mean volume increment and total aboveground biomass relating SNFI stand variables to
metrics derived from the ALS data.

2.3. Data Analysis

2.3.1. Regression Techniques

We compared the performance of several regression techniques, including novel machine learning
methods, for estimating stand level forest yield variables: (i) the parametric Multiple Linear Regression
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technique (MLR), and the non-parametric techniques (ii) k-Nearest Neighbour (kNN), (iii) Regression
Trees (RT) with M5P trees used as the basic regression technique for developing this ensemble (base
level algorithm), (iv) Random Forest (RF), and (v) the Ensemble Method (EM) with the metaclassifier
Stacking Multiple Classifiers.

The parametric MLR technique is the most commonly used approach in this type of study [51].
Moreover, the model produced is easy to understand and is widely used in most scientific disciplines.
However, unlike non-parametric approaches, MLR relies on certain assumptions such as the
fundamental least squares assumption of independence and equal distribution of errors with zero
mean and constant variance, which can be violated by various factors, including non-normality of
variables, multicollinearity of variables and heteroscedasticity of error variance.

Nearest Neighbour (NN), a well-known machine learning technique used in remote sensing [52],
makes predictions by using the information about the neighbours of the instance to be regressed [53].
The NN depends on a parameter, usually called k, which determines the number of neighbours used
by the algorithm. The technique is therefore usually called kNN when more than one neighbour is
used. Although the idea behind this type of technique is quite intuitive, the resulting model is not easy
to interpret because the results depend on a training set.

Regression Trees (RT) using M5P as the basic regression technique are ordinary decision trees with
linear regression models at the leaves that predict the value of observations that reach the leaves [54,55].
The nodes of the tree represent variables and branches represent split values. Model tree induction
algorithms are derived from the divide-and-conquer decision tree methodology. Unlike classification
trees, which choose the attribute and its splitting value for each node to maximize the information
gain, model trees choose these to minimize the intra-subset variation in the class values down each
branch and maximize the expected error reduction (standard deviation reduction). As the tree structure
divides the sample space into regions and a linear regression model is found for each, the tree is
somewhat open to interpretation.

Random Forest (RF), first proposed by Breiman [56], is a widely used non-parametric classification
and regression approach consisting of an ensemble of decision trees. The success of this technique is
based on the use of numerous trees developed with different independent variables that are randomly
selected from the complete original set of variables. The randomized sampling leads to greater stability
and better accuracy than a single decision tree approach [57]. The final regression estimate for each
sample is obtained as a weighted mean value of the estimates of a large number of individual trees [56].
The number of predictors included in the trees and the number of trees are established by the user. This
non-parametric approach is relatively insensitive to the number of input data and the multicollinearity
of the data [58].

Stacking (sometimes called stacked generalization) is an Ensemble Method (EM) that allows several
different types of prediction algorithms to be combined in a single algorithm [59]. This EM involves
training a learning algorithm to combine the predictions of several other learning algorithms. In addition
to selecting multiple sub-models, stacking enables specification of another model (meta-classifier) to
learn how to best combine the predictions from the sub-models (base classifiers). Because a meta model
is used to combine the predictions of sub-models, this technique is sometimes called blending, as in
blending predictions together. Stacking typically performs better than any single one of the trained
models [60].

WEKA open source software [61] was used to implement all of the techniques compared in this
study. Thus, linear regression was used for MLR, IBk for kNN and M5P for RT, while RF was used to
construct a forest of random trees and Stacking was used to develop the EM.

2.3.2. Feature Selection and Parametrization

A feature set describing a data instance might range in size from two to several hundred features.
The representative quality of a feature set greatly influences the effectiveness of ML algorithms. Feature
selection has three benefits: (i) learning and classification times are reduced by decreasing the number
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of features, (ii) the accuracy of classification is improved by removal of irrelevant or redundant
features, (iii) the degree of overfitting in the training dataset is reduced (i.e., Valbuena et al., [62]).
The number and type of features used to train the ML algorithm should therefore be carefully selected,
in a process known as feature selection. Feature selection algorithms are broadly categorized in the
filter or wrapper model.

In this study we used the search algorithms included in Wrapper methods to select the subsample
of variables as this usually produces the best results [63]. This feature selection process selects the
subsample of variables using a learning algorithm as part of the evaluation function. In the present
study, the goodness of the fit was evaluated by the root mean square error (RMSE) obtained with a
training set.

The different optimal parameters for each regression technique were configured using the
CVParameterSelection method implemented in the WEKA software [64], and parameter selection
was performed by cross-validation for the selected classifiers: (i) LinearRegression was used to fit
the MLR model with no attribute selection; (ii) IBk was used to fit the kNN model by setting the
number of neighbours to between 1 and 50; (iii) M5P was used to fit the RT by setting the minimum
number of instances to allow at a leaf node between 0 to 50 and maximum depth of unlimited tree;
(iv) RandomForest was used to fit the RF model by setting the number of trees to 1500, the number of
features selected in each split to between 0 and 10 and the maximum depth of unlimited tree; and (v)
Stacking was used to develop the EM to demonstrate the ability to improve predictive performance by
combining four of the above base classifiers (MLR, kNN, RT and RF) by setting the meta-classifier as
the MLR method for learning how to best combine the predictions.

2.3.3. Performance Evaluation

Several approaches can be used to train models and test data sets for validation of supervised
learning algorithms. We used the common method of k-fold cross validation. In this process, the data
set is divided into k subsets. Each time, one of the k subsets is used as the test set and the other k-1
subsets form the training set. Error statistics are calculated across all k trials. This provides a good
indication of how well the classifier will perform with unseen data. We considered a set of a 10-fold
cross-validation (i.e., models were fitting using 90% of the data for training and the remaining 10% for
model evaluation) and computed several standard performance metrics to compare the regression
techniques. Thus, we calculated three goodness-of-fit statistics: the pseudo-coefficient of determination
(R2), the bias, the absolute values of mean error (MAE) and the relative root mean squared error
(rRMSE). We also used the paired t-test (corrected), based on Student’s t-criterion, to detect any
significant differences in the results caused by the five approaches considered (α = 0.05). All of the
values represent the mean and the standard deviation of 100 model runs (i.e., 10-fold cross-validation
repeated 10 times using the training datasets).

Selected fitted models were also compared for each dependent variable on the basic of graphical
analysis of observed against predicted values of the dependent variable.

3. Results

As a result of the feature selection process, an optimal subset size of between 9 and 17 (of the
36) variables was selected by the Wrapper method (Figure 2). The results indicated that the features
for estimating TV, AITV and AGB by the different regression techniques evaluated can be classified
into two different groups. In order of decreasing importance, the first group comprises a combination
of height metrics (height percentiles and central trend metrics) and the second group comprises the
canopy cover metrics, with an average relative importance of variables of >38% and <5% respectively.
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The goodness-of-fit statistics yielded by the different regression methods used to model total
volume, TV (m3/ha), annual increase in total volume, AITV (m3/ha year), and total aboveground
biomass, AGB (t/ha), for the major commercial tree species in north-western Spain are shown in Table 4.

Table 4. Summary of the goodness-of-fit statistics yielded by regression methods for total volume, TV
(m3/ha), annual increase in total volume, AITV (m3/ha year), and total aboveground biomass, AGB
(t/ha), for the major commercial tree species in north-western Spain. Methods included Multiple Linear
Regression (MLR), k-Nearest Neighbour (kNN), Regression Trees (RT), Random Forest (RF) and the
Ensemble method (EM). All values represent the mean and standard deviation (std) of 100 model runs
(i.e., 10 replicates, each with 10-fold cross validation). The performance of the regression methods was
compared by using different statistics based on the model errors (mean field values were considered as
true values): coefficient of determination (R2), bias (Bias), the relative root mean square error (rRMSE);
and a paired t-test (corrected) based on Student’s t-criterion (α = 0.05); significantly differences are
indicated in bold type.

Sp
ec

ie
s

Statistics
Variable MLR kNN RT RF EM

Mean Std Mean Std Mean Std Mean Std Mean Std

Eu
ca

ly
pt

us
gl

ob
ul

us R2
TV 0.80 0.02 0.78 0.03 0.81 0.03 0.83 0.03 0.82 0.03

AITV 0.67 0.05 0.65 0.05 0.66 0.05 0.67 0.05 0.68 0.05
AGB 0.79 0.03 0.77 0.04 0.81 0.03 0.82 0.03 0.82 0.03

Bias
TV −0.08 0.01 −12.08 1.58 −1.86 0.23 −2.30 0.27 −0.76 0.09

AITV 0.01 0.00 −0.38 0.05 0.00 0.00 0.00 0.00 0.01 0.00
AGB −0.18 0.02 −7.00 0.92 −1.17 0.15 −1.36 0.16 −0.43 0.05

rRMSE
(%)

TV 33.16 3.99 35.23 4.78 31.78 3.77 30.71 3.55 30.81 3.46
AITV 35.03 4.19 35.57 4.52 35.21 4.52 34.59 4.00 34.24 3.94
AGB 34.75 4.44 36.91 5.00 32.79 4.05 31.59 3.76 31.71 3.65

Pi
nu

s
pi

na
st

er

R2
TV 0.72 0.03 0.71 0.03 0.73 0.03 0.73 0.03 0.74 0.03

AITV 0.53 0.05 0.54 0.05 0.51 0.06 0.55 0.05 0.56 0.05
AGB 0.72 0.03 0.71 0.04 0.72 0.03 0.73 0.03 0.74 0.03

Bias
TV −0.01 0.00 −4.01 0.42 0.49 0.05 0.36 0.03 −0.02 0.00

AITV 0.00 0.00 −0.13 0.01 −0.01 0.00 0.03 0.00 0.01 0.00
AGB −0.13 0.01 −1.52 0.16 0.18 0.02 0.25 0.02 −0.02 0.00

rRMSE
(%)

TV 39.05 3.62 39.88 4.08 38.39 3.68 38.17 3.62 37.95 3.53
AITV 43.03 4.17 42.88 4.25 44.09 4.09 42.33 3.79 41.95 3.91
AGB 39.58 3.56 40.21 4.05 39.44 3.67 39.00 3.65 38.51 3.57

Pi
nu

s
ra

di
at

a

R2
TV 0.75 0.06 0.76 0.05 0.75 0.06 0.79 0.05 0.78 0.05

AITV 0.63 0.09 0.65 0.07 0.62 0.08 0.69 0.06 0.67 0.06
AGB 0.77 0.07 0.78 0.05 0.77 0.06 0.80 0.05 0.79 0.06

Bias
TV 1.16 0.25 −5.45 1.20 0.52 0.12 0.03 0.00 −1.01 0.19

AITV 0.00 0.00 −0.07 0.01 0.14 0.03 0.02 0.00 −0.10 0.02
AGB −0.74 0.16 −7.14 1.83 −0.86 0.20 −0.85 0.19 −0.47 0.10

rRMSE
(%)

TV 40.81 8.83 40.29 8.65 40.18 10.58 37.23 7.32 38.35 7.19
AITV 39.60 8.63 39.11 7.70 40.43 8.14 36.67 6.32 37.50 6.52
AGB 40.61 9.54 42.28 11.02 40.86 9.67 38.27 8.77 39.02 8.71

The best results for the goodness-of-fit statistics are summarised as follows: (i) for TV and
E. globulus the RF model yielded R2 = 0.83 and RMSE = 64.33 m3/ha; for P. pinaster the EM model
yielded R2 = 0.74 and RMSE = 61.63 m3/ha; and for P. radiata the RF model yielded R2 = 0.79 and RMSE
= 66.52 m3/ha. (ii) for AITV and E. globulus the EM model yielded R2 = 0.68 and RMSE = 5.77 m3/ha;
for P. pinaster the EM model yielded R2 = 0.56 and RMSE = 3.86 m3/ha; and for P. radiata the RF model
yielded R2 = 0.69 and RMSE = 4.35 m3/ha. (iii) for AGB and E. globulus the RF model yielded R2 = 0.82
and RMSE = 44.29 m3/ha; for P. pinaster the EM model yielded R2 = 0.74 and RMSE = 35.26 m3/ha, and
for P. radiata the RF model yielded R2 = 0.80 and RMSE = 35.04 m3/ha. The goodness-of-fit statistics of
the fitted models were highest for E. globulus with all the approaches used. Regarding the variables to
be modelled, AITV always yielded the poorest goodness-of-fit statistics (Table 4).
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The MAE values obtained were used for graphical analysis of performance between the regression
techniques. The comparison was summarized in histograms showing the relative positions (percentile
rank) for each technique (Figure 3). Qualitatively, the MLR and kNN technique produced the best and
worst results respectively. Nevertheless, the EM and RF technique generally produced the best results.

The results of the paired t-test (corrected) based on Student’s t-criterion indicated significant
differences in the results produced by the five approaches considered (α = 0.05) for the E. globulus
and P. pinaster models, for which the best estimates were obtained with EM and RF, thus confirming
the idea previously outlined in Figure 3. However, for P. radiata, there were no significant differences
between the different approaches for any of the dependent variables (Table 4).

Graphical analysis of observed against predicted values of TV, AITV and AGB, estimated with
each respective best technique, is shown in Figure 4. The linear model fitted to the scatter plot did
not reveal any important problems related to heteroscedasticity or lack of normality, although there
appeared to be a slight tendency towards underestimation of high values of TV, AITV and AGB
(Figure 4).

The spatial distribution of the total aboveground biomass resulting from the application of the best
modelling technique for the three major commercial tree species (E. globulus, P. pinaster and P. radiata)
grown in forests across north-western Spain is presented in Figure 5 The high spatial resolution of
the maps reveals how the forest develops into fragmented environments, as a consequence of the
smallholding structure. We also observed that E. globulus is mainly concentrated on the coast and
P. radiata appears mainly in the interior areas of most provinces, but is almost non-existent in those
located to the south (Pontevedra and Ourense); P. pinaster is distributed indistinctly both on the coast
and in interior areas.

Finally, average values per hectare and total ALS-based wall-to-wall predictions for TV, AITV and
AGB for the three species occupying areas greater or equal to 70% according Spanish Forest Map were
generated per province by applying the best model developed in this study (Figure 6). Both volume
and biomass productivity were higher in the coastal provinces (Asturias, Cantabria, A Coruña and
Pontevedra) than in the interior areas (Lugo and Ourense) (Figure 6). Regarding the timber and forest
biomass stocks for the different species, for E. globulus and P. pinaster, forest production was higher on
the north central coast and on the west coast (Asturias, Pontevedra and A Coruña) and lower in the
interior regions (Ourense and Lugo) and Cantabria. However, P. radiata forest production is higher
on the northeast coast (Cantabria) of the study area than in the other provinces, where there are no
significant differences. In global terms, the timber and forest biomass stocks of E. globulus were highest
in the province of A Coruña (NW).
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Figure 4. Plot-level predicted against observed values for the best techniques for total volume (m3/ha), annual increase in total volume (m3/ha year) and total 
aboveground biomass (t/ha) in E. globulus (row 1), P. pinaster (row 2) and P. radiata (row 3). The solid line represents the linear model fitted to the scatter plot of 
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Figure 4. Plot-level predicted against observed values for the best techniques for total volume (m3/ha), annual increase in total volume (m3/ha year) and total
aboveground biomass (t/ha) in E. globulus (row 1), P. pinaster (row 2) and P. radiata (row 3). The solid line represents the linear model fitted to the scatter plot of data
and the dashed line represents the line of slope equal to 1.
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AITV (m3/ha year) and AGB (t/ha) in E. globulus (row 1), P. pinaster (row 2) and P. radiata (row 3). 
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Figure 6. Graphs showing the average and standard deviation (error bars) values per hectare (top) and total (bottom) of the ALS-based wall-to-wall predictions per 
province for total volume (TV), annual increase in total volume (AITV) and total aboveground biomass (AGB), for the three forest species studied. Results were 
obtained by applying the best model obtained in this study and the species distribution provided by the Spanish Forest Map. 

Figure 6. Graphs showing the average and standard deviation (error bars) values per hectare (top) and total (bottom) of the ALS-based wall-to-wall predictions per
province for total volume (TV), annual increase in total volume (AITV) and total aboveground biomass (AGB), for the three forest species studied. Results were
obtained by applying the best model obtained in this study and the species distribution provided by the Spanish Forest Map.
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4. Discussion

The study findings show that total over bark volume and total aboveground biomass yields for the
three major commercial tree species (E. globulus, P. pinaster and P. radiata) grown in north-western Spain
can be modelling using previously harmonized (by the proposed procedure) SNFI and ALS data, with a
precision comparable to that obtained in other studies published in the relevant international literature.

Several non-parametric methods were tested: the k-Nearest Neighbour method [65]; Regression
Trees [54], with M5P trees as the base level algorithm; the Random Forest method [56]; and the Ensemble
Method (EM), with a metaclassifier stacking multiple classifiers [59]. Multiple Linear Regression [51]
was also carried out to compare how it performs relative to non-parametric methods for estimating
forest yield variables at stand level. There were statistically significant differences for validation in
performance between the non-parametric methods and Multiple Linear Regression based on the results
of the paired t-test (corrected) with Student’s t-criterion (α = 0.05). On the other hand, there were no
differences between the use of R2 and RMSE for validation. There is some variation in the magnitude
of the errors (slight differences in terms of MAE and RMSE for validation) in the models analyzed, but
very large errors are unlikely to have occurred. The results obtained for the averaged models show
that RF and EM are the most robust techniques in the case of E. globulus, while EM is most robust for
P. pinaster and RF for P. radiata. Both of these methods are well known and frequently used in the field
of remote sensing, especially in forestry applications [2,6,66,67].

The R2 yielded by the TV, AITV and AGB models for the three forest species considered and
the different regression techniques ranged from 0.71 to 0.83, from 0.51 to 0.69, and from 0.71 to 0.82
respectively. The rRMSE values ranged from 30.71% to 40.81%, from 34.24% to 44.09%, and from
31.59% to 42.28% respectively (Table 4).

The study findings showed that the most important features for estimating TV, AITV and AGB
by the different modelling techniques evaluated correspond to a combination of height metrics
(height percentiles and central trend metrics), which are more sensitive to changes in both the vertical
arrangement of canopy elements and the degree of canopy openness [68,69]. This pattern is consistent
with those observed in other studies in relation to the prevalence of height variables (especially high
percentiles) as key elements for extracting information from LiDAR data [19,38,70]. Analysis of the
relative importance of the variables indicated a normal distribution skewed towards the top of the tree
canopy profile of E. globulus and P. pinaster plantations (h95 and h80 percentiles), together with the
symmetrical normal distribution of canopy elements in P. radiata plantations (h75 and h50 percentiles);
these results are consistent with the observations of Teobaldelli et al. [8]. According to the results
obtained for other pure coniferous forests [38,71–73], the set of models confirmed that the combination
of height and canopy cover metrics represents a sufficient and concise quantitative description of a
homogeneous vertical structure of the species analyzed.

In this study considerably better goodness-of-fit statistics were obtained than in previous studies
carried out with the same type of data in Spain (Spanish NFI and laser pulse density of 0.5 points/m2).
For example, the AGB models used by Jiménez et al. [4] in Galicia yielded R2 values of 0.55, 0.60–0.65
and 0.62, and rRMSE values of 64.52%, 46.92–57.71% and 48.31%, for Eucalyptus spp., P. pinaster and
P. radiata respectively. The AGB model used by Lekuona-Zuazo et al. [74] in Bizcaia yielded R2 = 0.67
and rRMSE = 32.66% in P. radiata forests. The TV and IATV models used by Tomé Morán et al. [75]
in Murcia yielded rRMSE values of respectively 47.2% and 44.4% for P. halepensis forests and rRMSE
values of respectively 45.8% and 43.9% for mixed stands of pines (P. nigra, P. halepensis and P. pinaster).
We only found one study [26], carried out in La Rioja, which reported values in the same range as those
obtained in the present study (R2 = 0.75 and rRMSE = 26.1–32.3 for P. sylvestris).

Considering the study area, although similar studies have been conducted in the region of Galicia,
all these were carried out using research plots rather than SNFI. Thus, for pure P. radiata forests, the TV
models used by González-Ferreiro et al. [76] yielded R2 = 0.69 and rRMSE = 30% for 0.5 points/m2,
and R2 = 0.79 and rRMSE = 25% for 8 points/m2; the AGB models used by the same authors yielded
R2 = 0.75 and rRMSE = 26.8% for 0.5 points/m2, and R2 = 0.80 and rRMSE = 23.7% for 8 points/m2. In a
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later study of pure E. globulus stands, the AGB model used by González-Ferreiro et al. [77] yielded
R2 = 0.63–0.83 and rRMSE = 28.3–19.2% for 0.5 points/m2, and R2 = 0.76–0.86 and rRMSE = 22.8–17.6%
for 4 points/m2. The TV model used by Gonçalves-Seco et al. [78] for E. globulus forests yielded R2 = 0.81
for a density of 4 points/m2. García-Gutiérrez et al. [79] reported R2 values of 0.66–0.70 and 0.64–0.79
for TV models fitted to LiDAR data sets of respectively 0.5 and 8 points/m2, and for AGB models, R2

values of 0.64–0.74 for 0.5 points/m2, 0.63–0.84 for 0.5 and 4 points/m2, and 0.61–0.77 for a laser pulse
density of 8 points/m2, in P. radiata and E. globulus.

Local studies carried out in other regions of Spain produced slightly higher results to those
outlined above, but most of the studies were carried out with higher pulse density and research plots.
For example, the TV model used by Navarro et al. [80] in Madrid yielded R2 = 0.79 and rRMSE = 25.6%
for a laser pulse density of 2.96 points/m2 in research plots of P. pinaster forests. Domingo et al. [81] in
Aragon reported that the AGB model yielded R2 values of 0.78–0.87 for 1.5 points/m2 for research plots
of Pinus halepensis. The results obtained in Extremadura by Guerra-Hernández et al. [38] for AGB model
yielded R2 = 0.57–0.74 and rRMSE = 25.9–33.1% in pure Pinus pinea forests for a laser pulse density
of 0.5 points/m2 and plots belonging to the Extremadura Forest Service, and Hernando et al. [82]
estimated the AGB yield R2 = 0.64 and rRMSE = 16.72% for 1.15 pulses m2 in research plots of
Pinus sylvestris-dominated forest located in Spain.

The present study findings were also similar to those obtained in Northern European countries,
such as Finland, where the TV model used by Järnstedt et al. [83] yielded rRMSE = 31.3% for a laser pulse
density of 0.5–2 points/m2 in specifically measured field data of Finnish forests and Kotivuori et al. [84]
yielded rRMSE = 27.8% for nationwide and ranged from 22.9% to 31.8% for regional TV models for
(0.5–1 points/m2) in nine Finnish Forest Centre inventory projects situated in various parts of Finland;
or in Denmark, where the AGB model used by Nord-Larsen & Schumacher [24] yielded R2 = 0.78 and
rRMSE = 33.1% and their TV model yielded R2 = 0.83 and rRMSE = 38.5% for a laser pulse density
of 0.5 points/m2 in NFI plots of coniferous forests. However, the rRMSE values obtained are slightly
lower than those reported by Nilsson et al. [2] in Sweden for the TV model (rRMSE = 18.9–22.5%) and
NFI plots of Picea abies, P. sylvestris and Betula spp. with a laser pulse density of 0.5–1 points/m2.

Slightly higher values were also obtained in other countries outside of Europe, probably as a
consequence of the use of higher density LiDAR data and research plots, which provide greater precision
in the geolocation of plots and coincide temporarily with the ALS data. Thus, Stephens et al. [85]
reported that their AGB model yielded R2 = 0.81 and rRMSE = 22% for a laser pulse density of
3 points/m2 in P. radiata, Pseudotsuga menziesii and Eucalyptus spp. forests in New Zealand. The AGB
model used by Gleason & Im [21] yielded an rRMSE = 18.1–32.4% for a laser pulse density of
12.7 points/m2 in coniferous and deciduous forests in New York state (USA); and the TV model used by
Görgens et al. [39] yielded R2 values of 0.88–0.90 and rRMSE values of 12.6% to 26.9% for a laser pulse
density of 5 points/m2 in forests of Eucalyptus grandis and Eucalyptus urophylla in Sao Paulo (Brazil).

After comparing our results for the study area with those obtained in the previously mentioned
studies, we can conclude the following: (i) our results produced similar results than those obtained
studies carried out in large scale with data obtained from SFNI plots and ALS data with the same
pulse density, and (ii) the accuracy of our results was slightly lower to those of studies developed in
smalls scale using research plots data and a higher pulse density. Although our predictions can be
considered accurate, more precise geolocation of the SNFI plots and coincide temporarily with the
ALS data would have enabled use of a much larger and robust field database to improve the overall
accuracy of estimation.

5. Conclusions

This paper presents a procedure to harmonize the 4th Spanish National Forest Inventory (SNFI-4)
and the 1st nationwide Airborne Laser Scanning (ALS) data and a comparison between common
regression techniques in machine learning and the MLR-based methods for estimating forest variables
to predict yield estimations for E. globulus, P. pinaster and P. radiata in north-western Spain. The results
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showed that Random Forest and Ensemble Method statistically out-performed the other techniques.
Nevertheless, the results confirmed recently reported findings, as machine learning techniques
produced better results than those produced by the parametric MLR technique.

Accurate positioning of field plots and coincident timing of NFI and ALS data are key points
when developing predictive models for stand properties from remote sensing data, and therefore
both conditions are desirable. Nevertheless, ideal conditions are often not met and approaches that
integrate both data sources are required. Despite some difficulties, we have demonstrated that is
possible to integrate both types of publicly available data in Spain and to combine them in order to
generate an accurate raster database of yield predictions for Spanish forests. These predictions can, of
course, be improved by increasing the accuracy of SNFI plot positioning as is being accomplished by
the Spanish Government. This will be a key element in using the SNFI database together with the
large amount of remote sensing data available nowadays.
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